Skip to content
English
हिन्दी
Español
中文 (中国)
Português
한국어
Home
Articles
All Courses
My Courses
Sign In
English
हिन्दी
Español
中文 (中国)
Português
한국어
Home
Articles
All Courses
My Courses
Sign In
Menu
Category
Machine Leaning Articles
S21L01 -Bayes theorem
S21L02 – Likelihood vs probability, normal distribution
S21L03 -Multinomial naive bayes
S21L04 – The log scale
S21L05 – Gaussian naive bayes
S21L06 – Gaussian naive bayes under Python
S22L01 – Euler_s number
S22L02 – Balanced vs imbalnced data
S23L01 -SVM getting started with 1D data
S23L02 -SVM, mapping higher dimension
S23L03 -SVM, in 2D space
S23L04 -SVM implementation using python
S24L01 -Decision Tree and Random forest
S25L01 -AdaBoost and XGBoost classifier
S26L01 -The accuracy, not so accurate
S26L02 -Confusion matrix
S26L03 -Accuracy, precision, recall, Specificity, F1 Score
S26L04 -Confusion Matrix 3D
S27L01 – Classification model master template
S27L02 -Classification model master template
S28L01 -Updated template with GridSearchCV
S28L02 -RandomizedSearchCV
S29L01 -ROC, AUC and PR curve background
S29L02 -ROC, AUC – Evaluating best model
S29L03 – ROC, AUC – Calculating the optimal threshold (Youdens method)
Prev
1
2
3
4
5
6
Next